Hello guys we are back with new shortcut on how to find last non zero digit of factorials
Shortcut:-
LNZ[(10*n)!]=LNZ(4^n)*LNZ[(2*n)!]
Where LNZ=Last non zero digit
*=Multiplication
Examples:-
Q1 Find last non zero digit of 100! ?
Sol:-Here n=10 ,because{100!=(10*10)!}
=>LNZ[(10*10)!]=LNZ(4^10)*LNZ[(2*10)!]----(1)
Now find LNZ[(2*10)!]
=>LNZ[(10*2)!]=LNZ(4^2)*LNZ[(2*2)!]
=6*4=24=4(we have to find last digit)
Now put the value of LNZ[(10*2)!] in eq(1)
=>LNZ[(10*10)!]=LNZ(4^10)*LNZ[(10*2!)]
=6*4=4
As LNZ(4^Even)=6
So Last non zero digit of 100!=4
Q2. what is the last non zero digit of 110! ?
Sol:-Here n=11 ,because {110!=(10*11)!}
=>LNZ[(10*11)!]=LNZ(4^11)*LNZ[(2*11)!]
=>LNZ[(10*11)!]=LNZ(4^11)*22*21*LNZ[(2*10)!]
=>LNZ[(10*11)!]=4*22*21*4=2
AS LNZ(4^ODD)=4
and LNZ[(2*10)!]=4(Already proved from previous example)
Stay tuned for more such shortcuts
Thanks
0 comments:
Post a Comment
Thanks for commenting,we will reply you soon