Join Our Facebook Group

Thursday, 8 February 2018

Shortcut to find last non zero digit of factorials


Hello guys we are back with new shortcut on how to find last non zero digit of factorials

Shortcut:-
LNZ[(10*n)!]=LNZ(4^n)*LNZ[(2*n)!]
Where LNZ=Last non zero digit
              *=Multiplication

Examples:-
Q1 Find last non zero digit of 100! ?
Sol:-Here n=10 ,because{100!=(10*10)!}
=>LNZ[(10*10)!]=LNZ(4^10)*LNZ[(2*10)!]----(1)
Now find LNZ[(2*10)!]
=>LNZ[(10*2)!]=LNZ(4^2)*LNZ[(2*2)!]
                        =6*4=24=4(we have to find                                                     last digit)
Now put the  value of LNZ[(10*2)!] in eq(1)
=>LNZ[(10*10)!]=LNZ(4^10)*LNZ[(10*2!)]
                             =6*4=4

As LNZ(4^Even)=6

So Last non zero digit of 100!=4

Q2. what is the last non zero digit of 110! ?
Sol:-Here n=11 ,because {110!=(10*11)!}
=>LNZ[(10*11)!]=LNZ(4^11)*LNZ[(2*11)!]
=>LNZ[(10*11)!]=LNZ(4^11)*22*21*LNZ[(2*10)!]
=>LNZ[(10*11)!]=4*22*21*4=2

AS LNZ(4^ODD)=4
and LNZ[(2*10)!]=4(Already proved from previous example)

Stay tuned for more such shortcuts
Thanks

0 comments:

Post a Comment

Thanks for commenting,we will reply you soon